192 research outputs found

    Measuring Neutron Star Radii via Pulse Profile Modeling with NICER

    Full text link
    The Neutron-star Interior Composition Explorer (NICER) is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.Comment: Submitted to Ap

    Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Get PDF
    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate

    Method and System for Gamma-Ray Localization Induced Spacecraft Navigation Using Celestial Gamma-Ray Sources

    Get PDF
    A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation

    Miniaturized High-Speed Modulated X-Ray Source

    Get PDF
    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons

    Probing the Masses of the PSR J0621+1002 Binary System Through Relativistic Apsidal Motion

    Get PDF
    Orbital, spin and astrometric parameters of the millisecond pulsar PSR J0621+1002 have been determined through six years of timing observations at three radio telescopes. The chief result is a measurement of the rate of periastron advance, omega_dot = 0.0116 +/- 0.0008 deg/yr. Interpreted as a general relativistic effect, this implies the sum of the pulsar mass, m_1, and the companion mass, m_2, to be M = m_1 + m_2 = 2.81 +/- 0.30 msun. The Keplerian parameters rule out certain combinations of m_1 and m_2, as does the non-detection of Shapiro delay in the pulse arrival times. These constraints, together with the assumption that the companion is a white dwarf, lead to the 68% confidence maximum likelihood values of m_1 = 1.70(+0.32 -0.29) msun and m_2 =0.97(+0.27 - 0.15) msun and to the 95% confidence maximum likelihood values of m_1 = 1.70(+0.59 -0.63) msun and m_2 = 0.97(+0.43 -0.24) msun. The other major finding is that the pulsar experiences dramatic variability in its dispersion measure (DM), with gradients as steep as 0.013 pc cm^{-3} / yr. A structure function analysis of the DM variations uncovers spatial fluctuations in the interstellar electron density that cannot be fit to a single power law, unlike the Kolmogorov turbulent spectrum that has been seen in the direction of other pulsars. Other results from the timing analysis include the first measurements of the pulsar's proper motion, mu = 3.5 +/- 0.3 mas / yr, and of its spin-down rate, dP/dt = 4.7 x 10^{-20}, which, when corrected for kinematic biases and combined with the pulse period, P = 28.8 ms, gives a characteristic age of 1.1 x 10^{10} yr and a surface magnetic field strength of 1.2 x 10^{9} G.Comment: Accepted by ApJ, 10 pages, 5 figure

    Deciphering the Nature of the Pulsar Wind Nebula CTB 87 with XMM-Newton

    Get PDF
    CTB 87 (G74.9+1.2) is an evolved supernova remnant (SNR) which hosts a peculiar pulsar wind nebula (PWN). The X-ray peak is offset from that observed in radio and lies towards the edge of the radio nebula. The putative pulsar, CXOU~J201609.2+371110, was first resolved with \textit{Chandra} and is surrounded by a compact and a more extended X-ray nebula. Here we use a deep {\textit{XMM-Newton}} observation to examine the morphology and evolutionary stage of the PWN and to search for thermal emission expected from a supernova shell or reverse shock interaction with supernova ejecta. We do not find evidence of thermal X-ray emission from the SNR and place an upper limit on the electron density of 0.05~cm−3^{-3} for a plasma temperature kT∼0.8kT\sim 0.8 keV. The morphology and spectral properties are consistent with a ∼\sim20~kyr-old relic PWN expanding into a stellar wind-blown bubble. We also present the first X-ray spectral index map from the PWN and show that we can reproduce its morphology by means of 2D axisymmetric relativistic hydrodynamical simulations.Comment: 9 pages, 10 figures. Accepted for publication in MNRA

    Development of Ground-testable Phase Fresnel Lenses in Silicon

    Full text link
    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 8 pages, 3 figure
    • …
    corecore